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ABSTRACT -c 

The problem of steady-state,  r ad ia t ive  t ranspor t  through a 

f i n i t e ,  spher ica l ly  symmetric and uniformly generating medium is 

considered. The governing equations a r e  applicable t o  the  study 

of thermal rad ia t ion  i n  a heat generating grey gas as w e l l  as t o  

t h e  idea l i za t ion  proposed by merman,  Engelmann, and Oxenius t o  

s tudy rad ia t ion  loss i n  a homogeneous, isothermal spher ica l  

plasma due t o  an op t i ca l ly  thick spec t r a l  l i n e  associated with the  

. . - _  

de-exci ta t ion energy of two-level impurity ions. 

r e l a t e d  d i r e c t l y  t o  the  study of a one-dimensional problem i n  a 

The analysis is  

s l a b  of f i n i t e  o p t i c a l  thickness. 

t h e  d i r e c t  appl icat ion of results based on the  invariance p r in -  

a l e s  of Ambartsumian and Chandrasekhar . I n  pa r t i cu la r ,  exact 

. expressions are derived f o r  the source function a t  the spher ica l  

Boundary and the  rad ia t ive  flu loss. 

i n  terms of tabulated moments of Chandrasekhar's 

This equivalence then permits 

h 

These r e s u l t s  are expressed 

X and Y functions. 
,/ 
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INTRODUCTION . 
~ 4 .  

- 
This paper considers the  predict ion of s teady-state  r ad ia t ive  t ranspor t  i 

through a f i n i t e  and homogeneous spherical  medium t h a t  i s  re leas ing  energy 

uniformly. The main object ive is the determination of e x p l i c i t  expressions 

f o r  the  t o t a l  power loss of t h e  system and the  surface value of the  source 
I 

emission function. "he analysis  i s  s implif ied a t  the  outse t  by es tab l i sh-  

ing a formal equivalence between t ransport  problems i n  a unidimensional 

slab and i n  t he  spher ica l  region. 

appl icat ion of spec ia l  techniques introduced o r ig ina l ly  by Ambartsumian 

and Chandrasekhar t o  t r e a t  planar problems. 

This equivalence then - permits .. t he  d i r e c t  

Since the  governing equations have been developed fully elsewhere, a 
. *  

standard formulation i s  accepted at the  outset  of t h e  next sect ion.  The 

standard t r e a t i s e s  of Chandrasekhar, Kourganoff ,2 and Sobolev3 provide 

der iva t ions  of t he  i n t e g r a l  t ransfer  equations and, i n  appl icat ion,  proceed 

t o  de t a i l ed  analysis  of rad ia t ion  i n  a plane-parallel medium. The equations 

a r e  s u f f i c i e n t l y  general  t o  permit d i f f e ren t  physical  in te rpre ta t ions .  

From one poin t  of view, one may consider the passage of thermal rad ia t ion  

through a heat-generating medium which has a constant volumetric absorption 
-_ 

coe f f i c i en t  

known heat-generation r a t e  per  un i t  volume. 

sphe r i ca l  enclosures has been calculated numerically by Sparrow, Usiskin, 

and Hubbard4 and the  present  exact r e s u l t s  complement t h a t  work. Special  

a t t e n t i o n  i s  also d i rec ted  t o  the  model introduced by Cuperman, Engelmann, 

and O ~ e n i u s ~ ' ~  t o  character ize  the s teady-state  energy lo s s  of a homogeneous 

and isothermal plasma due t o  de-excitation rad ia t ion  of impurity ions t h a t  

are assumed t o  have two energy leve ls  only. 

i s  associated with an op t i ca l ly  th ick  spec t r a l  l i n e  and is calculated 

K indeperident of frequency, the so-called grey case, and a 

Thermal t ranspor t  through 

I n  t h i s  case, rad ia t ion  loss  

/ 
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. 
under the  assumption t h a t  a l l  other  t r ans i t i ons  of t h e  ions remain op t i ca l ly  

th in .  
* '  - The results given below f o r  a n  extensive range of parameters may be 

compared d i r e c t l y  with the  pa r t i cu la r  numerical cases f o r  a sphere given 

by Cuperman e t  

i so t ropic  sca t t e r ing  of l i g h t  i n  a spherical  region. 

A t h i r d  physical i n t e rp re t a t ion  involves the  

So far as we are aware the l i t e r a t u r e  of rad ia t ion  theory contains 

little explo i ta t ion  of the close connection between t h e  spherical problem 

and t h e  planar  case. O u r  i n i t i a l  concern was motivated by i n t u i t i v e  con- 

i 
I 

i 
E 
I 
! 

I 

s idera t ions  of t he  s imi l a r i t y  between r ad ia t ive  f l u x  f o r  -opt ica l ly  th i ck  

mater ia ls  and conductive heat flux where, i n  t he  l a$ te r  case, the  formal 
I 

equivalence f o r  the two geometries is wel l  known (see,  e.g., C a r s l a w  

and Jaeger,7 p .  230). 

- 
r 

After t h i s  analysis was completed, it was discovered 

t h a t  t h e  in te r re la t ionship  has received more a t t en t ion  i n  t he  development 

of neutron t ranspor t  theory (see, e.g., Davison'). 

t r i b u t i o n  appears i n  the  expression of physical ly  s ign i f i can t  quant i t ies ,  

namely,the surface emission function and the  power loss,  i n  terms of known 

Our pr inc ipa l  con- 

phys ica l  parameters and moments of the Chandrasekhar -Ambartsumian functions,  

X and Y. 

required moments, and Sobolev, lo i n  t u r n ,  has givqn a s y q t o t i c  expressions 

for X and Y which a i d  i n  the  calculat ion of l imi t ing  cases. The needed 

addi t ions t o  Sobouti 's  t ab l e s  a r e  supplied here. 

toge ther  with expressions obtained through the  use of Sobolev's re la t ions ,  

a r e  of some general  i n t e r e s t  and may prove useful  i n  t r ans fe r  problems 

a r i s i n g  i n  o ther  examples of radiat ive interchange. 

Sobouti? has recent ly  supplied tabular  values for most of t he  

These addi t iona l  moments, 

Throughout t he  analysis ,  dependence on the  rad ia t ion  frequency i s  

Whether one in t e rp re t s  the solut ion i n  suppressed i n  t h e  terminology. 

terms of emission associated with a narrow spec t r a l  l i n e  o r  of an average 

over a continuous spectrum i s  a matter of personal i n t e r e s t  and requires  

no change i n  notation. -. . # 
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GOVERNING EQUATIONS 

Consider a spher ica l  region of radius R. The i n t e g r a l  equation 

governing r ad ia t ive  t r ans fe r  w i l l  be wr i t ten  i n  terms of t h e  dimension- 

l e s s  var iable  p i n  a form that d i f f e r s  only i n  minor details frm 

t h e  terminology of Cuperman e t  a l .  ,6 namely, 

KR 
P W  = PB(P) + s, P,S(P,)[EJ]P-P,l) - El( IP+P,l)ldP, (1) 

- - _ _  

where 

general  index as 

El(x)  is  the  f i r s t  exponential i n t e g r a l  function defined with 

The absorption coef f ic ien t  K i s  averaged over t he  frequency i n t e r v a l  

and i s  assumed t o  be independent of posi t ion,  r i s  distance measured 

from t h e  center  of the  sphere, p = K r ,  and S(p)  is, i n  the  language of 

r ad ia t ion  theory, the  source emission function. The in t e rp re t a t ion  of 

w depends on the  p a r t i c u l a r  application. In  the  problem of radiative 

hea t  t r ans fe r  through a nonisothermal, absorbing and heat-generating 

~ 

c 

medium the governing equations a r e  a lgebra ica l ly  equivalent i f  w = 1. 

A l s o  45r~B(p)  i s  power generated per un i t  volume and the  e n t i r e  frequency 

range of Planck's function B,(T) is  considered from which one gets  

S ( p )  = aT4(r)/x where T ( r )  i s  l o c a l  temperature. I n  the  model of 

Cuperman e t  a1.6 the  medium i s  isothermal and i n  Eq. (1) 73 = (l-w) B,(To) 

where w i s  constant and depends on the  l i n e  absorption coef f ic ien t  and 

the  exc i t a t ion  process. In  the case of i so t ropic  sca t te r ing ,  w is  the  
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4 spherical  i nd ica t r ix  of s ca t t e r ing  and B(p) i s  r e l a t ed  e i t h e r  t o  the incident 

rad ia t ion  or  an in t e rna l  source of energy production. 

here is  with the  f i rs t  two applications and a t t en t ion  w i l l  be d i rec ted  t o  t h e  

case B(p)  a constant. 

Our primary concern 

By an obvious change of variables,  Eq. (1) becomes 

- 

The function S ( p )  is  defined i n i t i a l l y  only f o r  p > 0. Extend now i ts  

de f in i t i on  so t h a t  

- 
S ( p )  = S( -p) and introduce the  %ransformations 

/ 

where the  source function is  made dimensionless through d iv is ion  by the  con- 

s t a n t  value of B. Equation (3) then takes  the  form 

. 
Equation (5 )  can be interpreted i n  terms of r ad ia t ive  t r a n s f e r  through 

L 

a s l a b  of op t i ca l  thickness 2~~ and with a l o c a l  energy generation r a t e  

equal  t o  a l i n e a r  function of T .  Special  methods developed f o r  t he  l a t t e r  

case thus become d i r e c t l y  applicable. 

A second i n t e g r a l  r e l a t i o n  can a l s o  be derived f o r  calculat ing the  

l o c a l  energy flux q, t h a t  is, the  energy per  u n i t  time traversing a u n i t  

area normal t o  the r a d i a l  direct ion.  If q = q(p)  is  expressed as a function 

of 

t h e  desired r e l a t i o n  is  

p and if a net  energy flow i n  the  outward d i r ec t ion  has a pos i t i ve  value, 

/’ 
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. -  
I .  

We s h a l l  be espec ia l ly  in te res ted  i n  t he  t o t a l  rad ia t ion  loss from the  sphere 

and for t h i s  reason introduce the  symbol W, where W = (p2q/13n)p=KR, 

denote . th i s  quant i ty  which depends solely on w and the  o p t i c a l  radius  KR 

of the  sphere. Evaluating Eq. (6) a t  p = KR one ge ts  

t o  

-- - _- 

or 

. - .  

Differen t ia t ion  of Eq. (6) and comparison with Eq. (1) es tab l i shes  the  

usefu l  r e l a t i o n  

w d  
prr dP 
4 - ( P W  = BP - (l-W)PS(P) 

and t h i s  reduces, when B i s  constant, t o  

I 

1 
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d I n  the  next sect ion a r&mm& i s  given of methods whereby surface values 

of Q ( T )  are made avai lable  along with the  dimensionless rad ia t ion  lo s s  

W ( W , T ~ ) .  The mathematical problem is one of invert ing the  i n t e g r a l  Eq. ( 5 )  

and t h i s  d i r e c t s  a t t en t ion  t o  the nature of the  resolvent  kernel  of the  

equation. Manipulative d e t a i l s  have been avoided s ince they are a t  times 

lengthy and a r e  c losely r e l a t ed  t o  the bas ic  calculat ions of Chandrasekharl 

and Sobolev.3 W e  have chosen, instead, t o  concentrate on e x p l i c i t  formulas 

and expansion procedures t h a t  a i d  i n  t h e i r  evaluation. 
- -- 

APPLICATION OF INVARIANCE: PRINCIPLES 

Equation ( 5 )  i s  a Fredholm in t eg ra l  equation with symmetric kernel.  

A *  It has the  general  form 

and, a f t e r  inversion, may be wri t ten 

J O  

where 

T and T ~ .  A grasp on the  ana ly t ic  nature of L i s  achieved through con- 

L ( T , T ~ ; T ~ )  i s  the  resolvent kernel  which is  a symmetric function of 

s ide ra t ion  of d i f f e r e n t i a l  invariants  f o r  the  spec i f i c  kernel  i n  hand. 

This approach, which arose i n i t i a l l y  from t h e  physical  concept t h a t  f o r  

i n f i n i t e  up t i ca l  thickness surface conditions a re  not modified by inclusion 

of an  addi t iona l  layer  of l imited depth, can be extended formally t o  y i e ld  

i 
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where 

When T~ > T, Eq. (loa) y i e lds  

The symmetric kernel  can thus be calculated i n  terms of the  unidimensional 

function Q(T)  where @(T)  s a t i s f i e s  t h e  i n t e g r a l  equation 
I .  

Ta 
w @(T)  = 5 E1(Tj + 

If Eqs. (ga) and (gb) are specialized, one ge ts  t he  r e l a t ions  

The values of F ( T , ~ )  at T = 0 and T = T~ a r e  the Chandrasekhar- 

Ambartsumian functions.  Denoting these values, respectively,  by X( I J . , T ~ )  and 

Y(p,-ra), we get  from Eq. (14) 

J O  
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I n  the Russian l i t e r a t u r e  these functions a re  usually denoted as 

$(p) and referred t o  as Ambartsmian functions. 

the  three parameters It suf f ices  here t o  state t h a t  they 

have been computed f o r  a wide range of t he  parameters and t h a t  Sobouti' 

has also provided t h e i r  moments 

tp(p) and 

!They ac tua l ly  depend on 

p , ~ ~ ,  and w. 

an, Pny n = 0, 1, 2 where 

The val ie s 

. I. 

... 

f these moments w i l l  determine the  quant i t ies  we seek. 

From comparison of Eqs. ( 5 ) ,  ( 9 ) ,  and (11) we have, a f t e r  s e t t i n g  

Ta = 2T0, 

-. - 

6!(2T0) = -6!(o) = TOS(TO)/B 

where 

,/ 

I 



Detailed evaluation of these expressions, s t a r t i n g  with Eq. ( U ) ,  leads t o  

the  following r e s u l t s  

r 1 

I n  a= rek3tiOllS = an( Ta)  = %(2T0), Pn = Pn(Ta) = Pn(2To) - 
Chandrasekharl and S o b o l e 3  have derived fundamental i d e n t i t i e s  satis - 

The following r e l a t ions  are usefu l  as checks f i e d  by the  moment functions.  

of numerical accuracy and a l so  i n  algebraic manipulation of formulas 

7 

Equation (22) provides the  exact predict ion of t he  surface values of 

t h e  source emission function. It reduces t o  an indeterminate form i n  the  

s p e c i a l  case w = 1. The desired expression then becomes 

The evaluation of rad ia t ion  loss, as expressed by Eq. (n), depends 

upon a knowledge of t he  var ia t ion  of 

i s  expressed i n  terms of O ( T )  by Eq. (ll), and O ( T )  i s  re la ted  t o  Y ( T )  

Q( 7 ) .  Since the  resolvent kernel  

i 
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* by Eq. (20) ,  t he  inversion of Eq. (9b), with F(T) replaced by n(7) and 

* 
G(T) replaced by T - T ~ ,  can be manipulated algebraical ly  t o  give 

Subst i tut ion in to  Eq. (n) permits one t o  a r r ive  a t  a prediction i n  

terms of known functions. After algebraic s implif icat ion the formula 

- .. 

J 
When w = 1 the radiat ion loss  function W can be derived d i r e c t l y  

through physical considerations of rad ia t ive  heat t ransfer .  If q i s  

energy flux a t  the  surface of the  sphere, a balance between t o t a l  r a t e  

of loss  a t  the surface and t o t a l  r a t e  of energy production within the 

sphere y ie lds  t h e  r e l a t ion  kR2q = ( 4nR3/3) [43t KB] , where the bracketed 

term, as noted previously, i s  r a t e  of energy production per un i t  volume. 

m e  equality reduces immediately t o  W(l,-rO) = 47-33. Integration of 

Eq. (8b) from 

w = 1. 

T = -io t o  T = 2~~ leads t o  the  same conclusion when 

Equations (22), (24), and (26) comprise the  specif ic  r e su l t s  of t h i s  

sect ion.  Actual predictions now follow by means of simple ari thmetic operations 

, 
/ 
I 
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. 
. -  through use of the  moment functions of X and Y. Sobouti'sg tab les  give 

The accompanying Table I gives % and Bn for 

addi t ional  values of 

f'unctions. 

n = 0, 1, 2, and 2-r0 <_ 3. 

u3 and B3 computed from Sobouti'sg t ab le  of X and Y 

Graphical r e su l t s  w i l l  be given i n  the next section. 

For op t i ca l  thicknesses of increasing magnitude it is convenient t o  

When w = 1, Sobolev's r e so r t  t o  asymptotic re la t ions  given by Sobolev.lo 

Here, H(p) i s  Chandrasekhar's' H function which corresponds t o  the  planar 

problem f o r  a semi-infinite medium. The constant 7 i s  twice the r a t i o  of 

the  second and f irst  moments of  H(p) . Denoting the nth moment of H ( p )  

- 
by ?&, where an = an(m), the following values apply when w = 1 

. I -- . 

The values for n = 3, 4 were calculated from the tabulated values of H(p) 

given by Stibbs and Weir." Previously given values f o r  n = 0, 1, 2 were 

recalculated as a check on the numerical accuracy. Differences appeared 

only i n  the f i f t h  decimal place. 

," 
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8 

From Eqs. ( 2 7 )  and ( 2 8 )  t h e  asymptotic moment r e l a t ions  f o r  w = 1 are 

Th re la t ions ,  t gether 

predict ions a t  w = 1 

(30) 

rith Eqs.  (24) and (26), provid the  following 

Values calculated from Eqs. (31) and (32) may be compared d i r e c t l y  with t h e  

tabulat ions of surface source strength and energy l o s s  given by Cuperman 

e t  a1.6 A t  

t i ons  of t he  emission function. Their approximate predict ions of energy 

loss  a re ,  however, more accurate than were the  de ta i led  calculat ions.  

T~ = 10 agreement i s  excellent f o r  t h e i r  most prec ise  calcula-  

It remains t o  estimate the  range of f o r  which the  asymptotic 

expressions can be used safely. A measure of t h i s  range follows after 

comparison of t he  predict ions i n  Eqs. ( 3 0 )  and Sobouti 's numerical evalua- 

t i o n  of t h e  moments. 

and a t  t h i s  end point  t h e  differences between t h e  predict ions of Eqs. (30) 

and the tabulated values differ  a t  worst i n  t he  four th  decimal place.  

Equations (31) and ( 3 2 )  should therefore y ie ld  about four  f igure  accuracy 

f o r  r0 2 1.5. 

Sobouti 's t a b l e s  f o r  n = 0, 1, 2 stop a t  T a  = 3 
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When w f 1, Sobolev'sl0 asymptotic re la t ions  are less simple. I n  t h e  

(34) 
y(p,Ta) - ci & H ( P ) ~  -kTa 

The parameter k depends on w and is a root  of the  charac te r i s t ic  equation 

Its values a re  given by Chandrasekhar (see p.  19) The parameters C and 

C 1  s a t i s f y  the  re la t ions  

Cl 
r l  

Jo 

Taking moments of Eqs. (33) and (34), one has 

/' 

t 
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Thus, by v i r tue  of Eq. (35) 

For the present purposes, a more convenient approximation follows by 

Using tabulated values of 

o la t ing  f o r  greater  thicknesses by assuming the  tabulations agree with 

the  asymptotic predictions at Ta = 3. This modification y ie lds  

%(Ta) and &(‘a) for a l l  Ta 5 3 and extrap- 

So far as is  known, t he  var ia t ion of t he  parameters 

not avai lable  i n  the  l i t e r a t u r e .  

of w and k demands a considerable degree of accuracy i n  H(p). I n  t h e  

r e s u l t s  t o  follow we have used Eqs. (42) and (43) throughout. 

C and C1 with w is  

Precise calculat ion over the full range 

For small values of o p t i c a l  thickness, Chandrasekhar’ (p. 204, e t  seq.) 

has given t h e  appropriate expansions f o r  t he  

moments. 

X and Y 

The simplest forms of these expressions are 

functions and t h e i r  
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where 

The range of v a l i d i t y  of the  approximations i s  small and more accurate 

representat ions a r e  avai lable .  

desired,  use of Eqs. (44) should be l imited t o  

If accuracy beyond three  decimal places  i s  

T~ < 0.1. 

Fig. 1 < Figure 1 shows graphically the dependence of t he  source function a t  

the surface, R ( ~ T , ) / I - ~  = S ( T ~ ) / B ,  on and the  o p t i c a l  radius of the  sphere. 

The curves represent the  predictions of Eqs. (22) and (24) and the  points  

used i n  p l o t t i n g  the  curves were calculated f o r  those values of w l i s t e d  

i n  Table I. F r o m  Eq. (22) it follows t h a t  when w = 0, Q ( ~ T ~ ) / T ~  i s  

w 

independent of T ~ .  As w nears 1 it is apparent t h a t  increasing demands 

are made on the  accuracy of (ao-Po) and ( C L ~ - I ~ ~ ) -  The l imi t ing  case, = 1, 

i s  given exact ly  by Eq. (24), however, and a consis tent ,  monotonic va r i a t ion  

of t h e  graphs followed from the  tabulated moments except f o r  w = 0.95, 

/’ 
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T < 2. I n  th i s  region the curves were f a i r ed  t o  conform with the  known 

end value. Isolated comparisons with published  prediction^^'^ show good 

agreement. From Sobouti 's t ab l e s  the following r e s u l t s  w e r e  determined 

f o r  w = 1 

9 -  

~~ ~ 

f i ( 2 ~ ~ ) / 7 ~  1.256 1.520 1.787 2.064 2.622 3.755 

A t  th i s  value of 

source function when 

w, Eq. (31) gives an approximate expression f o r  the  

T~ >> 1; when T~ << 1 Eqs.  (24) and (44) y i e ld  

R(2T0)/T0 cv 14- O ( T : ) .  

Fig. 2 < Figure 2 shows t h e  var ia t ion  of t he  radiat ion-loss  function as ca l -  

An analyt ic  contrast  appears i n  the  calculat ion of culated from Eqs. (26). 

t he  source function and the  loss  function a t  extreme values of w. Thus, 

t h e  former is  fixed a t  w = 0 and has a more complex behavior a t  w = 1; 

t h e  lat ter is  determined simply a t  w = 1 and is subject  t o  more carefu l  

consideration a t  w = 0. Since, however, R ( T )  = T - T~ when w = 0, 
. 

th i s  va r i a t ion  may be used together with Eq. (7b) t o  ge t  

4 
3 When 

W ( O , T ~ )  .. T; + O(1). 

gave smooth, monotonic functions of w and T~ throughout the range of 

T~ << 1, one has W ( O , T ~ )  =: - T: + O ( T : )  and when T~ >> 1, 

Again, t he  tabular  values of t he  moment functions 

ca lcu la t ion  except f o r  w = 0.95, T~ 5 2. 

'The previous work has been based e n t i r e l y  on the  use of functions and 

moments derived or ig ina l ly  f o r  use i n  as t rophysical  problems. I n  these 
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concluding paragraphs the  solut ion t o  Eq. (l), or ( 5 ) ,  f o r  

re la ted  t o  other  numerical r e s u l t s  t h a t  have appeared within the  p a s t  

w = 1 is 

few years i n  t he  engineering l i t e r a t u r e .  In  the  l a t t e r  case, t he  par -  

t i c u l a r  problem of rad ia t ive  heat t r ans fe r  between heated p a r a l l e l  w a l l s  

and through a grey medium t h a t  maybe generating energy has been considered 

(see,  e.g., Usiskin and Sparrow,= Viskanta and Grosh,” and Howell and 

Perlmutter14). In t he  most general form of the  problem the  walls have 

known emission coef f ic ien ts  but  it is possible  t o  reduce the  analysis  t o  

black-wall emission. These d e t a i l s  w i l l  not be repeated here. It is  t o  

be remarked merely t h a t  the  general so lu t ion  may b$ expressed as a l i n e a r  

combination of solut ions of the uncoxpled i n t e g r a l  equations 

where T = KX and x is the distance measured from one of the  walls. 

Optical  distance between the  walls i s  -ra. The dependent functions a r e  

representa t  ions of dimens ionless  temperature functions 

,/’ 
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. 
where 

are ,  respectively,  t h e  two wall tenrperatures and a i s  t h e  Stefan-Boltmann 

T(x) is temperature d i s t r ibu t ion  through the  medium; Twl and Tw2 

constant. In  both instances the  walls e m i t  as black bodies. Equation (48) 

i s  t h e  so lu t ion  f o r  B = 0 and Eq. (49) the  solut ion f o r  Tw, = Tw2. 

Calculations of these functions have been car r ied  out ab i n i t i o  and the  - 
r e s u l t s  may be found i n  the  c i t e d  references and elsewhere. I n  most cases 

t h e  solut ions are presented graphically and can be read to, a t  most, two o r  

three s ign i f i can t  f igures .  

Known solutions t o  Eqs. (46) and (47) can be transformed without 

excessive labor in to  the  so lu t ion  o f  Eq. ( 5 ) .  Star t ing  with Eq. (47), 

a new function E ( T )  i s  introduced where 

Equations (50) and (47) y i e l d  

The so lu t ion  Q(T) of Eq. ( 5 )  for w = 1 can now be expressed as a l i n e a r  
w 

combination of Q(T) ahd Cp( 7). Setting T a  = 2-r0 one has 

Equation (52) relates the var ia t ion  of the emission function SI(.) t o  

( ~ ( 7 )  and a ( ~ ) ,  t h e  lat ter followirg from an addi t iona l  running integrat ion 

of the known function 

Figure (3)  shows the source function 

cps( T )  . 
Fig. 3 < S ( p ) / B  = Q ( T ) / ( T - T ~ )  calculated 

from Eq. ( 5 2 )  by using unpublished mmerical solut ions of Eqs. (46) and 

,/,' 
(47) computed by the  present writers.  



- 20 - 

FOOTNOTES 

' S .  Chandrasekhar , R a  -- d t i v e  !?ransf er (Oxf ora 

Dover Pub., New York, 1960). 

Univ. Press,  1950; a l s o  

2V. Kourganoff, Basic Methods - i n  Transfer Problems (Oxford Univ. Press,  

.'1952; a l s o  Dover Pub., New York, 1963). 

3V. V. Sobolev, Treat ise  on Radiative Transfer (D. Van Nostrand Co. 

Xew York, 1963). 

*E. M. Sparrow, C. M. Usiskin, and H. A. Hubbard, Int .  J. Heat and 

 ass Trans. - ~ 8 3 ,  199 (1961). 

5S. Cuperman, F. Engelmann, and J. Oxenius, Phys. Fluids - 6, 108 (1963). 

' S .  Cuperman, F. Engelmann, and J. Oxenius, Phys. Fluids Z, 428 (1964). 

'H. S. C a r s l a w  and J. C. Jaeger, Conduction --- i n  Heat and Solids (Oxford 

Univ. Press,  1959). 

'B. Davison (with J. B. Sykes), Neutron Transport Theory (Oxford Univ. 

Press,  1957). 

9Y. Sobouti, Astropkiys. J., Supp. Ser. 7, no. 72, 411 (1963). 

lov. V. Sobolev, Soviet Astronomy 1, 332 (1957) (published by Am. Ins t .  
. 

Physics) 

"I>. W. N. Stibbs and R. E. Weir, Nonthly Notices of Roy. Astro. SOC. 

- 119, 512  (1959). 

uC. M. Usiskin and E. M. Sparrow, I n t .  J. Heat and Mass Trans. ;1, 

28 ( 1 9 6 ~ ) .  

13R. Viskanta and R. J. Grosh, Internat ional  Developments i n  Heat 

"ransfci-, Pa r t  IV, ASME, New York, 820 (1961). 

'*J. R. Howell and M. Perlmutter, J. Heat Trans., ASME - 8 6 ~ ,  116 (1964). 



. - 21 - . ; ’  

FIGURE LEGEhiS 

Fig. 1.- Dimensionless source function a t  surface of sphere, showing 
, 
I 

dependence on op t i ca l  radius and the  parameter w. 

Fig. 2.- Dimensionless radiation-loss function for sphere, showing 

dependence on op t i ca l  radius and the  parameter w. 

Fig. 3.- Variation of source function within sphere f o r  selected values 

of op t i ca l  radius and w = 1. 

. 
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